A

17803 120 MINUTES

1.	and re	tly India's nittee (GEAC), commended its earance from G	s approv	the go	enetical	ly mod		l for co	mmercial		
	A)	Brinjal	B)	Cotto	n	C)	Maize	D)	Tomato		
2.	Name t A) B) C) D)	he Scientists w Watson and C Jacob and Mo Nathan, Arbe Boyer and Co	Crick onad r and Sr		restricti	on enzy	mes.				
3.	Asexu A)	al, hollow fung Conidium	gal fruiti B)	ng bod Basidi	•	inside v C)	vith conidioph Pycnidium	nores is o	called: Peridiun	n	
4.	a. b. c. d.	the plant orga Cladode Phylloclade Leaf tendril Stem tendril		1) 2) 3) 4)	Passif Glorid Opunt Aspara	lora osa ia agus					
	A) C)	a-4, b-3, c-2, a-3, b-4, c-1,			B) D)		-2, c-1, d-3 -4, c-2, d-1				
5.	The co A) B) C) D)	Introns Insertion sequences that en Ac element	ience			acteristi	cally contain	copies o	f		
6.	Name the technology that simultaneously measures and analyzes multiple physica characteristics of single particles, usually cells, as they flow in a fluid stream through a bean of light.										
	A) C)	Liquid scintil Gel filtration	lation		B) D)		cytometry rotein liquid o	chromato	ography		
7.	Xylem A) C)	Gas filled voi Freezing of x	d in xyl	em	B) D)	-	nsion of air bu		-		
8.	The m A)	odern bread wi Diploid	heat <i>Trit</i> B)	ticum a Hexap		is: C)	Triploid	D)	Tetraplo	id	

9.		-	-	re sensitive mutation in the gene that encodes the						
				temperatures, rho is not functional in this strain.						
	When	these bacteria are raised at ele	evated	temperatures, which of the following effects would						
	you ex	rpect to see?								
	A)	Inhibition of transcription								
	B)	All the RNA molecules produced	duced v	will be longer than normal						
	C)	All the RNA molecules produced	duced v	will be shorter than normal						
	D)	Some of the RNA molecule	s produ	iced will be longer than normal						
10	Calaa	t the electrists unbrenched the	11,,,,,							
10.		et the alga with unbranched tha		F -4						
	A)	Zygnema	B)	Ectocarpus Palasial assis						
	C)	Batrachospermum	D)	Polysiphonia						
11.	Matc	h the following with the correc	ct comb	pination:						
	1.	Shine-Dalgarno sequence	a.	mRNA surveillance						
	2.	tRNA Charging	b.	Eukaryotic transcription initiation						
	3.	Kozak sequence	c.	Prokaryotic transcription initiation						
	4 .	tmRNA	d.	Adenosine triphosphate						
	٦.	umativi i	u.	Auchosine improspriate						
	A)	1-c, 2-d, 3-b, 4-a	B)	1-c, 2-d, 3-a, 4-b						
	C)	1-d, 2-c, 3-b, 4-a	D)	1-d, 2-c, 3-a, 4-b						
10	г	.1 C 11	1 4 4							
12.	cultu	<u> </u>	a out t	he one which is not an objective of plant embryo						
			ta matl	oor plant						
	A)	Clonal propagation of an eli		•						
	B)	_ ,	Overcoming embryo abortion due to incompatibility factors Embryo rescue in distant hybridization							
	C)			UON						
	D)	Overcoming seed dormancy	,							
13.	Whic	ch of the following is not a sequence	uence a	alignment tool?						
	A)	BLAST	B)	FASTA						
	Ć)	CLUSTAL-W	,	RASMOL						
14.		th of the following is not an ob	-	of vegetative propagation?						
	A)	Multiplication of an elite va	•							
	B)	Production of 'true to the ty								
	C)	Cost effective multiplication								
	D) Production of plants which are resistant to pests									
15.	The f	following are some statement	s about	structural genes and regulator genes. Choose the						
13.		bination which represents the st								
	1.	*		o mRNA, but regulator genes are not.						
	2.	_		nat function in the structure of the cell, products of						
	۷.	regulator genes carry out me		<u>-</u>						
	3.			s, regulator genes control the transcription of						
		structural genes	•							
	4.	Both structural and regulato	r genes	are transcribed into mRNA						
	A)	1 & 2 only B) 3 & 4	only	C) 1 & 3 only D) 2 & 4 only						
	Λ)	1 & 2 Omy B) 3 & 4	omy	C) 1 & 3 omy D) 2 & 4 omy						

16.	Which	n of the following is a	rootless	Pterido	phyte?								
	A)	Lycopodium			B)	Isoetes							
	C)	Ophioglossum			D)	Salvinia	!						
17.	If five	nce of more than two a different alleles are passible in the population	resent a		_	-		<u>=</u>					
	A)	30 B)	25		C)	10	D)	15					
18	Which A) B) C) D)	They are made of a property are made of a property are made of piles. They are involved in	orotein s to adhe in	ere to si									
19.	Match	Match the following terms with the names of the Pteridophytes:											
	a.	Tassel	1)		Osmunda								
	b.	Spike	2)	Azollo									
	c.	Prismatic tissue	3)	Isoete	?S								
	d.	Sporocarp	4)	Ophic	oglossur	n							
	A)	a-1, b-3, c-2, d-4		B)		–4, c−1, d							
	C)	a-1, b-4, c-3, d-2		D)	a-2, b	–4, c–3, d	-1						
20.	Acety	lation of histones	_										
	A)	stimulates translation		B)	stimu	lates trans	cription						
	C)	retards translation		D)	retard	s transcrip	otion						
21.	Select	the one which is not a	a compo	nent of	spindle	:							
	A)	Polar microtubules		B)	Nonp	olar micro	tubules						
	C)	Astral microtubules		D)	Kinet	ochore mi	crotubules						
22.	(comp From homo: + + + + + s + p +	- 348	many f test cross Il three g o + + o + s	lowers ss mati genes) c - 11 - 2 - 30	in a clung of a determine 0	uster) were in F1 hete	e found to be erozygote for	e in chromosome 2.					
23.	Which	n of the following is th	e only l	iving fo	ssil rep	resentativ	e of Gymnos	sperm?					
	A)				Glossopteris browniana								
	Ć)	Cupresus Sempervir	ens	B) D)		sylvestris							

24. Three linked genes **a**,**b**,**c** occupy the following linkage positions on a particular chromosome.

Choose the genotypes of the gametes which are represented the least in the pool of gametes produced by an individual with the genotype abc/ABC

- A) Abc & ABC
- B) aBC & Abc
- C) abC & ABc
- D) aBc & AbC
- 25. Choose the correct match between the antibodies with the statements:
 - a. IgM
- 1) can cross placenta and confer passive immunity to fetus
- **b**. *IgE*
- 2) common in body secretions
- c. IgG
- 3) appears first in response to a primary infection
- \mathbf{d} . IgA
- 4) involved in allergic reactions
- A) a-2, b-3, c-1, d-4
- B) a-3, b-4, c-1, d-2
- C) a-1, b-3, c-2, d-4
- D) a-4, b-3, c-1, d-2
- 26. Choose the species of *Gnetum* which is a woody climber
 - A) Gnetum ula
- B) Gnetum contractum
- C) Gnetum gnemon
- D) Gnetum trinerve
- 27. Neils Jerne, Georges Koehler and Cesar Milstein were awarded the Nobel Prize in Physiology or Medicine in 1984 for the discovery of
 - A) RNA interference
 - B) Eukaryotic transcription factors
 - C) Principle for the production of monoclonal antibodies
 - D) Genetic control of early embryonic development
- 28. Choose the correctly matched combination:
 - \mathbf{a} . lacZ

1) prevents self ligation of vector

b. DMSO

- 2) blue-white selection
- **c.** Alkaline phosphatase
- *cryoprotectant*

d. Mg^{2+}

- 4) Taq DNA polymerase
- A) a-2, b-3, c-1, d-4
- B) a-3, b-4, c-1, d-2
- C) a-1, b-3, c-2, d-4
- D) a-4, b-3, c-1, d-2

29.	Which of the following is a suitable method for mass propagation of an elite plant which is virus infected?												
	A)	Nodal cult	ure	B)	Antl	ner culture							
	C)	Meristem	culture	D)	Call	us culture							
30.		O J											
	iii.	Southern Blotting											
	iv.	Hybridization using probe											
	<i>v</i> .	Autoradio	graphy										
	vi.	~											
	A)	RAPD	B)	AFLP	C)	RFLP	D)	SNP detection					
31.	Which of the following is not a part of the gene gun or microprojectile bombardment device?												
	A)	Rupture di		B)		roprojectiles							
	C)	Stopping screen D) Micromanipulator											
32.		ose the set th	-			involved in	the Inte	rnational Nucleotide					
	A)	DDBJ, EN	A and NO	CBI-GENBAI	٧K								
	B)			T and PROS									
	C)	,		and PROSIT									
	D)	DDBJ, SW	/ISS-PRC	T and NCBI-	GENBA	ANK							
33.		The term used to denote the complete set of RNAs present in a cell, tissue or organism under any particular set of conditions is:											
	A)	Transcript	ome	B)		abolome							
	C)	Proteome		D)	Gen	ome							
34.	The expansion of BLAST is:												
	A)	-											
	B)	_	_	Alignment Sea		1							
	C)	Basic Local Alignment Search Tool Beginners Local Alignment Software Tool											
	D)	Beginners	Local Alı	gnment Softv	vare Too)l							
35.	Nam	_				rst generation	Golden F	Rice.					
	A)		_	ene from <i>Erw</i>									
	B)	•		gene from Erv		edovora							
	C)	•		ene from Daf									
	D)	Polygalact	uronase g	ene from Daf	10011								
36.		ct the method tonly after the	_				n is separ	rated from the mother					
	A)	Mount layering B) Cleft grafting											
	C)	Approach	grafting	D)	Both	n A and B							

37.		r is a self repl s is used to pro Phage λ vecto Plasmid vecto	duce sing		opies o M 13	_	sert?	ich of the following			
38.	Which A) B) C) D)	ch of the following is NOT true about Retroviruses? Retroviruses use own reverse transcriptase enzyme to synthesize its DNA Retroviruses are positive-sense RNA viruses The retroviral DNA integrates itself with the host genome as a provirus Retroviruses are not used as research tool in gene delivery systems									
39.	Obser A)	ve the followin Tapioca	_	tubers. Choos Sweet potato		tem tuber fron Potato	n them. D)	Radish			
40.	Flask I incubat	B contains lact	cose and he flasks enzyme?	glucose and	Flask	C contains la	actose. A	A contains glucose, After a few hours of hich flask(s) do you A and C			
41.	,	ge lysozyme is an enzyme involved in: Breaking down of portions of bacterial cell wall Phage nucleic acid multiplication Phage coat synthesis Phage maturation									
42.											
	A) C)	i and ii only i and iii only		B) D)		nd iv only d iv only					
43.		-	peron pro turned o	events the reg	ulator Will	-	oinding.	: A mutation at the Γhen the operon:			
44.		riophages can iophage suspen Plaque formir Particle formi	ision is u		sed in t Phag		PFU star s	The concentration of ads for:			

45.	purpl invol reces with	colour of egg plant in the le, violet and white coloured are P and p. Ho esive plants produce we violet fruits is used in white fruits?	oured fromozygo hite fru	ruits depous don	ending ninant the het	up on the plants proceed	genotype of duce purple produce vi	the plant. The alleles fruits, homozygous iolet fruits. If a plant
	A)	All the progeny	B)	1/4	C)	1/2	D)	0
46.	Caps A) B) C) D)	omeres are Fully developed infectious viral particles Subunits of viral protein coat Special structure seen in the genetic material of retroviruses Special structure seen in the genetic material of adenoviruses						
47.	Name A) C)	e the pteridophyte with Ophioglossum Isoetes	n the str	uctures, B) D)	Equ	and forame isetum silea	en.	
48.	Selec	et the one which is not	a reaction	on of ph	otoresi	oiration		

- - Oxygenation of RuBP into 2-phosphoglycolic acid and 3-phosphoglyceric acid A)
 - B) Oxidation of glycolic acid to glyoxylate
 - C) Conversion of two molecules of glycine into one molecule of serine
 - Decarboxylation of malic acid to pyruvic acid D)
- 49. The Hardy-Weinberg law describes how reproduction and Mendalian principles affect the allelic and genotypic frequencies of a population. Which of the following statement is not an assumption of the Hardy-Weinberg law?
 - The allelic frequencies of the population do not change A)
 - The allelic frequencies (p and q) are equal B)
 - The population is randomly mating C)
 - The population is large D)
- 50. Columns A and B contain a few statements about gymnosperms and angiosperms respectively. In both the columns some statements are wrong. Find out the wrong statements.

No.	A (Gymnosperms)	No.	B (Angiosperms)
1	Heterosporous	a	Heterosporous
2	Ovules are absent	b	Produces exosporic gametophytes
3	Naked ovary present	c	Sporophytic phase is not the predominant phase in the life cycle
4	Generally xylem vessels are absent	d	Male gametes are nonmotile

A)	1, 2 and	(a), (b) only
~`		/ \ / d\ =

^{2, 3} and (b), (c) only B)

51.	The Birbal Sahni Institute of Palaeobotany is an autonomous institute constituted under the Department of Science and Technology, Government of India. In which State is this institute located?											
	A)	Rajasthan	B)	Uttar Pradesh	C)	West Benga	l D)	Punjab				
52.		sents the statem cDNA librar Clones in cD A cDNA fron	nents wi y is rep NA libr n the lib		e RNA ly intr	population fro ons l into a prokary	m whic otic org	ganism				
	A)	i & ii only	B)	ii & iii only	C)	i & iv only	D)	i & iii only				
53.	The major ingredient of the Cinnamon leaf oil is											
	A)	Cinnamaldel	•		B)	Eugenol						
	C)	Cinnamonalo	cohol		D)	Thymol						
54.	 Observe the following statements relat i. Higher level of Nitrogen and P ii. More cyanobacterial colonies iii. High BOD level 			ogen and Phosph		phication. Choo	ose the	correct statement(s).				
	A)	i only		B)	i and	iii only						
	C)	i and ii only		D)		f these						
55.	Which of the following is an aggregate fruit?											
	A)	Apple		B)		ard apple						
	C)	Pineapple		D)	Fig	11						
56.	Matc	h the technical	terms w	vith the binomial	s:							
	a)	Gynobasic st		1)		botrys odoratis.	simus					
	b)	Apocarpous	•	2)		anthus annuus						
	c)	Cypsela	•	3)	Citri	is sinensis						
	d)	Hesperidium		4)	Leuc	as aspera						
	A)	a-2, b-4, c-1	, d-3	B)	a-2,	b-3, c-4, d-1						
	C)	a-4, b-1, c-2	2, d-3	D)	a-4,	b-1, c-3, d-2						
57.	Pick	the mismatch										
	A)	Legume	-	Fabaceae								
	B)	Pome	-	Portulacaceae								
	C)	Caryopsis	-	Poaceae								
	D)	Siliqua	-	Brassicaceae								

58.	memb contai	rane. Chambers A and an ans 50 gram sucrose and from the following opto Water will move from Water will move from	nd B cond charions. In A to B to A	contain mber B	ted chambers (A and B) using a semipermeable one liter water each. In addition chamber A contains 100 gm sucrose. Choose the expected olume of water no movement occur						
	D)	Cannot predict		1							
59.	Match	the commercial produ	cts with	the bir	oomials:						
	a)	Mace	1)	Glycin							
	b)	Soybean	2)		ica fragrans						
	c)	Rose wood	3)	•	rgia latifolia						
	d)	Tomato	4)		ersicon esculentum						
	u)	Tomaio	4)	Lycop	ersicon escuientum						
	A)	a-3, b-4, c-1, d-2		B)	a-1, b-2, c-4, d-3						
	C)	a-1, b-2, c-3, d-4		D)	a-2, b-1, c-3, d-4						
60.	Select A) B) C) D)	Aquaporins are peripheral membrane proteins They form channels for the movement of water Water diffuses faster through aquaporins than through membranes Aquaporin activity is regulated by phosphorylation and pH									
61.	Which memb		he grad	ient of	electrochemical potential of H ⁺ across the plasma						
	A)	Vacuolar H ⁺ -ATPase		B)	H ⁺ /K ⁺ -ATPase						
	C)	H ⁺ -pyrophosphatase		D)	Plasma membrane H ⁺ -ATPase						
62.	Which of the following is a bacterium capable of nitrogen fixation?										
02.	A)	Nitrobacter	acteriu	B)	Acetobacter						
	C)	Azotobacter		D)	Nitrosomonas						
63.	nitrate	Plant cells avoid ammonium toxicity by rapidly converting the ammonium generated from nitrate assimilation or photorespiration into amino acids. An important enzyme involved in this conversion is: A) Glutamate synthase B) Pterin									
64.	The for i. ii. iii. iv.	ii. They are heme proteinsiii. They are the most abundant proteins in the root nodule									
	A >			D)	tt and ttt ander						
	A)	i and iv only		B)	ii and iii only						
	C)	i only		D)	iv only						

65.	The primary structure of protein represents:											
	A)	_		mino acids bor	nded by	peptide bor	nds					
	B)	3-D structure										
	C)	Helical config		1								
	D)	Sub unit struc	cture									
66.	Paraq	uat is a widely	used he	rbicide. It acts	by bloc	cking:						
	A)	Photosynthet	ic electr	on flow								
	B)	Shikimate par	thway									
	C)	Terminal resp	oiratory	pathway								
	D)	Shoot-ward a	uxin tra	nsport								
67.	What	strategy is use	d by th	e chloroplasts	to store	e large amo	unts of red	luced carbo	n without			
	chang	ging the osmotion	balanc	e of the cell?								
	A)	Storing the re	duced o	carbon as sucro	se							
	B)	Storing the reduced carbon as 3-PGAL										
	C)	Storing the reduced carbon as insoluble starch granule										
	D)	Storing the reduced carbon as glucose-1-phosphate										
68.	Proce	ssing of the ina	appropr	iately position	ed bran	ches of am	ylopectin, o	during starc	h granule			
	synth	esis, is carried o	out by v	which pair of er	nzymes	?						
	A)	Isoamylases a	and D-e	nzyme								
	B)	• • • • • • • • • • • • • • • • • • • •										
	C)	Amylases and	dα-gluc	anphosphoryla	ases	-						
	D)	Glucan-water	dikinas	se and Phospho	oglucan	-water dikir	nase					
69.	The following are some of the reactions in glycolysis. Identify the one which produces ATP.											
	A)	Glucose 6 phosphate to fructose 6 phosphate										
	B)	Fructose 1,61 phosphate	biphosp	hate to glycera	ldehyde	e 3 phospha	te and dihy	droxy- acet	one			
	C)	Glucose to gl	ucose 6	phosphate								
	Ď)	,										
70.	Choo	se the mismatch	1									
	A)	Auxin	_	Charles Darv	vin and	Francis Da	rwin					
	B)	Cytokinin	_	Induction of								
	Ć)	Gibberellin	_	Biosynthesis			drion					
	D)	ABA	-	Promotes ser								
71.		protein storage ge form of		es contain a co	mpoun	d called phy	tin. In seed	ls Phytin is	the major			
	A)	Phosphate	B)	Manganese	C)	Iron	D)	Cobalt				
	11)	Thospitate	D)	Manganese	C)	non	D)	Cooun				

72.	Choos a) b) c) d)	te the correct matches Phytochrome Calmodulin Cryptochrome Carotenoid	1) 2) 3) 4)	620-70 Photoj	and MTHF pterin are chromophores 00nm and 710-850nm protection um ions as second messenger
	A) C)	a-3, b-1, c-4, d-2 a-1, b-2, c-3, d-4		B) D)	a-2, b-4, c-1, d-3 a-4, b-3, c-2, d-1
73.		-	ch is not s nmed ce	t likely ell deatl	stress responses in plants. From the following to be caused by heavy metal uptake.
74.	When A) C)	two elements that diffe Polarized Broken	er in ele	ectroneg B) D)	ativity form a covalent bond, that bond is Non-polarized Double bond
75.	Which A) C)	of the following funct Amino group Metal Cation	tional g	roups is B) D)	an electrophile? Sulfide group Carboxylate group
76.	Select A) C)	an aldotetrose from th Erythrose Dihydroxyacetone	e follow	ving list B) D)	of monosaccharides Glyceraldehyde Erythrulose
77.		is the principal compo homopolysaccharide. N-acetyl-D-glucosam Muramic acid		f the hand B) D)	rd exoskeleton of arthropods. Name the monomer D-glucuronic acid N-acetylmuramic acid
78.	From A)	the given list of proteir α-keratin B)	ns select Collag		e with left handed helix C) Fibroin D) Elastin
79.	The mA)	ost common saturated Palmitic acid Arachidonic acid	fatty ac	id in pla B) D)	ants is Oleic acid Lauric acid
80.	A con symbo A) C)	ventional abbreviation of Δ ⁹ indicate? Number of carbon ato Number of double bo	om	carbon B) D)	skeleton of oleic acid is $18:1(\Delta^9)$. What does the Number of hydrogen atom Position of double bonds

81.	Beta diversity refers to:								
	A)	Within habitat diversity	B)	Regional or landscape diversity					
	C)	Between habitat diversity	D)	Between geographical area diversity					
82.	Nam	Name a cellular site other than mitochondrion where fatty acid oxidation similar to							
	β-oxidation takes place.								
	A)	Nucleus	B)	Chloroplast					
	C)	Peroxisome	D)	Endoplasmic reticulum					
83.	Lesch-Nyhan syndrome is associated with:								
	A)	A) Defects in salvage pathway of nucleotides							
	B)	Errors in DNA repair							
	C)	Problems in genic balance							
	D)	,							

Vitamin A

85. Match the following statements with the type of inhibitor:

B)

Select the vitamin which is water soluble

Vitamin K

No.	Statement	No.	Inhibitor type
1	Binds at the active site of the enzyme	a	Uncompetitive inhibitor
2	Binds only to the enzyme substrate complex	b	Irreversible inhibitor
3	Binds to either free enzyme or enzyme substrate complex	С	Competitive inhibitor
4	Forms a covalent link with the enzyme	d	Noncompetitive inhibitor

C)

Vitamin C

D)

Vitamin E

- A) 1-c, 2-a, 3-d, 4-b B) 1-a, 2-d, 3-b, 4-c C) 1-b, 2-d, 3-c, 4-a D) 1-d, 2-c, 3-a, 4-b
- 86. Phosphorous cycle differs from the carbon and nitrogen cycles in which of the following aspect?
 - A) It lacks a liquid phase

84.

A)

- B) It has no gaseous phase
- C) Activities of living organisms are not involved
- D) Absence of a solid phase
- 87. The sweetness of freshly picked corn is due to high levels of sugar in the kernels. But about 50% of the free sugar is converted to starch within one day of picking. To preserve the sweetness of fresh corn the husked ears are immersed in boiling water for a few minutes. Corn processed in this way maintains its sweetness. What is the biochemical basis for this procedure?
 - A) The enzyme(s) that convert sugar to starch are inactivated by heat
 - B) Sugar is modified to an inconvertible form by high temperature
 - C) High temperature activates heat shock proteins and they keep the sugar intact
 - D) High temperature and wetness makes the sugar not accessible to the enzyme(s)

88.	Choos A)	se the radioisoto	pe used B) ³	in Pos ³² P	sitron E	Emission C)	Tomograpl	ny (PET s D)	scan). ³⁷ Cl	
89.	DNA A) C)	molecule of a ba Relaxed Negatively sup			bp lon B) D)	_	ely superco		The DNA molecule	is:
90.	Select A)	the gas which is Oxygen		mobil Nitrog	-	e in gas C)	chromatogr Hydrogen	aphy D)	Chlorine	
91.	Choose the correct representation of the arrangement of microfilaments, microtubules and intermediate filaments in the increasing order of their diameter (nm)									d
	A) B) C) D)	Intermediate fi Intermediate fi Microtubule < Microfilament	ilament < Intermed	Microdiate f	ofilame ilament	ent < Mi c < Micr	crotubule ofilament			
92.	Micro A) C)	filaments are fir Actin Fibroin	ne thread	like p	rotein f B) D)	Tubuli	•		edominantly of	
93.	3. 'The unidirectional and irreversible passage through the cell cycle is brought about by t degradation of critical protein molecules at specific points in the cycle'. From the followi examples select the one which is not illustrating the above statement.						•			
	A) B) C) D)	Proteolysis of Proteolysis of Proteolysis of Proteolysis of	Wee 1 prosecurin a	rotein it the b	kinase a eginnir	at the en	nd of metapl	-		
94.	As a r	esult of duplicate ation in which	tion, sequention, sequential time duplication	uence	of the s	segmentis imm	s changes to	AB.CD acent to t	sents the centromere EFEFG. This type on the original region is	of
95.	a)b)c)d)	the inflorescend Umbel Hypanthodium Corymb Cyathium	1 2 3 2 2	1) M 2) Pe 3) Fl	ale flow eduncle owers v lder and	vers rep is mod with sta d young		ar shaped length ave stalks		7
	A) C)	a-4, b-1, c-3, a-3, b-2, c-1,			B) D)		-1, c–2, d-3 2, c-4, d-1	3		

96.	sym			ıt syn Iı	ye, round face and mental retardation are the drome. What kind of disorder causes this aversion translocation
97.	Whi A) C)	ch of the following pyran Pyramid of numbers Pyramid of energy	nids is alwa B) D)	P	right? yramid of biomass .ll of the above
98.	Mat	ch the signaling systems v	with the des	scripti	ons:
	No.	System		No.	Description
	1	Endocrine		a	Affect only target cells in close proximity
	2	Autocrine		b	Released by a cell and act on target cells at a distance
	3	Paracrine		c	Act on the cell which releases the signal
	A)	, ,	1-a, 2-c, 3-	-b C	(1) 1-a, 2-b, 3-c D) 1-b, 2-c, 3-a
99.	Flav A)	rsavr tomato was produc Calgene B)	ed by: Mahyco	C) Monsanto D) Eli Lilly
100.	The A) C)	lichen genus <i>Parmelia</i> be Ascolichens Deuterolichens	elongs to: B) D)		asidiolichens ficrolichens
101.		ector should have which of MCS ii. Small size		_	eatures: iple ori iv. Low replication speed
	A)	i, ii & iii only B)	ii, iii & iv	only (C) i, ii & iv only D) i, iii & iv only
102.	In w	hich district of Kerala the	e regional c	enter	of NBPGR is located?
	A)	Thiruvananthapuram	B)		hrissur
	C)	Kozhikode	D)	A	lappuzha
103.	mult tech	ciplying the same withou nique is defined in the sta	t contamin tement?	ation	gous individual from the mixed population and to release as a new variety'. Which selection
	A)	Pureline selection	B)		Mass selection
	C)	Clonal selection	D)	N	Tatural Selection

104.	Match the following organisms with the diseases:									
	a)	Ustilaginoidea s	-	Coffe						
	b)	Cephaleuros sp.	2)	Powd	ery mil	dew of Rubber				
	c)	Hemileia sp.	3)	False	smut d	f Paddy				
	d)	Oidium sp.	4)	Red r	ust of t	ea				
	A)	a-4, b-2, c-1, d-3		B)		o-4, c-2, d-3				
	C)	a-1, b-4, c-3, d-2	2	D)	a-3, 1	o-4, c-1, d-2				
105.	Ministry of Agriculture, Govt. of India made it mandatory to colour code the pesticides based									
	on the level of toxicity. Which colour indicates 'highly toxic' pesticide?									
	A)	Bright red		B)	_	nt yellow				
	C)	Bright blue		D)	Brigl	nt green				
106.		rocess of successfu	ul establishı				ea is cal	lled:		
	A)	Sere		B)	Clim					
	C)	Invasion		D)	Eces	is				
107.	Find the mismatched pair									
	A)	A) Virtually all of the water vapour occur in this layer - Troposphere								
	B)									
	C)	In this layer tem	perature go	beyond	1000°	\mathbb{C}	- '	Thermosphere		
	D)	This layer is the	coldest part	of Eart	h's atn	nosphere	-	Mesosphere		
108.	Following are some of the events in extracellular cell signaling. Arrange them in the order of their incidence									
	i.	Initiation of intro	acellular sig	gnal-tra	nsduct	ion pathway(s)	by the	activated receptor		
	ii.	Changes in cellu	-	-		-	-	1		
	iii.	Feedback regula				•				
	iv.	Binding of a sign				O				
	A)	iv, ii, i, iii B	ii, i, i	v, iii	C)	iv, i, ii, iii	D)	i, ii, iv, iii		
109.	Select the term which denotes the percentage of assimilated energy that is incorporated into new biomass.									
	A)	Consumption eff	ficiency	B)	Assii	milation efficie	ncy			
	C)	Production effici	•	Ď)		hic efficiency	J			
110.	Biodiv	versity hotspots ar	e determine	d on the	e basis	of:				
	Biodiversity hotspots are determined on the basis of: A) Number of endemic species they contain and the degree of threat they face									
	B) Their nearness to national parks and biosphere reserves									
	C)									
	D)									
				_						

111.	Which of the following can produce an embryo during sexual reproduction?									
	A)	Cyathus	B)	Funaria						
	C)	Cladophora	D)	Peziza						
112.	Find o	ut the mismatched pair								
	A) B) C) D)	Francesco Redi A I Oparin and J B S Haldand Stanley Miller and Harold Un Sydney Fox		 Disproved theory of spontaneous generation Simulated early Earth Abiotic formation of biological molecules Protenoids 						
113.		anded DNA. Find out the segment which is likely n enzyme								
	A)	5'-TGGACC-3' 3'-ACCTGG-5'								
	B)	5'-TGGCCA-3' 3'-ACCGGT-5'								
	C)	5'-TGGTGG-3' 3'-ACCACC-5'								
	D)	5'-TGCCCA-3' 3'-ACGGGT-5'								
114.	popula			lated from a large population and establish a new lation differs from the parent population. This Founder effect Speciation						
115.	Nanana A) C)	drium is produced by: Batrachospermum Ulothrix	B) D)	Polysiphonia Oedogonium						
116.	-	ocess by which organic companisms like bacteria and fungi Biomagnification Biotransformation		are transformed from one form to another, aided ed as: Bioleaching Bioadsorption						

117. Match column A with column B:

Column A Column B

- 1) CpG islands (a) DNA methylation
- 2) RISC (b) Argonaute
- 3) Riboswitches (c) regulatory sequence on mRNA
- 4) Epigenome (d) pattern of chromatin modifications owned by individual
- A) 1-a, 2-b, 3-c, 4-d
- B) 1-a, 2-b, 3-d, 4-c
- C) 1-a, 2-c, 3-b, 4-d
- D) 1-c, 2-a, 3-b, 4-d
- 118. The IUCN Red List of Threatened Species is widely recognized as the most comprehensive, objective global approach for evaluating the conservation status of plant and animal species. From the following statements select the one which is not an objective of IUCN Red List.
 - A) To provide information and analyses on the status, trends and threats to species in order to inform and catalyse action for biodiversity conservation
 - B) Establish a baseline from which to monitor the change in status of species
 - C) Provide a global context for the establishment of conservation priorities at the local level
 - D) Monitor on a continuing basis the status of the global biodiversity hotspots, record anthropogenic activities against biodiversity and to penalize the culprits
- 119. Black walnut trees produce allelopathic chemicals including juglone that interfere with the growth of other plants. What kind of ecological interaction is this?
 - A) Competition
- B) Parasitism
- C) Commensalism
- D) Protocooperation
- 120. Choose an organism without a 'true nucleus'
 - A) Nostoc

B) Aspergillus

C) Chlorella

D) Chlamydomonas